Reducing affinity as a strategy to boost immunomodulatory antibody agonism

0
22
  • Muramatsu, M. et al. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102, 553–563 (2000).

    CAS 

    Google Scholar
     

  • Viant, C. et al. Antibody affinity shapes the choice between memory and germinal center B cell fates. Cell 183, 1298–1311.e11 (2020).

    CAS 

    Google Scholar
     

  • Forthal, D. N. Functions of antibodies. Microbiol. Spectr. 2, 1–17 (2014).


    Google Scholar
     

  • Singh, S. et al. Monoclonal antibodies: a review. Curr. Clin. Pharmacol. 13, 85–99 (2018).


    Google Scholar
     

  • Mullard, A. FDA approves 100th monoclonal antibody product. Nat. Rev. Drug Discov. 20, 491–495 (2021).

    CAS 

    Google Scholar
     

  • Kohler, G. & Milstein, C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256, 495–497 (1975).

    CAS 

    Google Scholar
     

  • Clackson, T., Hoogenboom, H. R., Griffiths, A. D. & Winter, G. Making antibody fragments using phage display libraries. Nature 352, 624–628 (1991).

    CAS 

    Google Scholar
     

  • Pedrioli, A. & Oxenius, A. Single B cell technologies for monoclonal antibody discovery. Trends Immunol. 42, 1143–1158 (2021).

    CAS 

    Google Scholar
     

  • Mayes, P. A., Hance, K. W. & Hoos, A. The promise and challenges of immune agonist antibody development in cancer. Nat. Rev. Drug Discov. 17, 509–527 (2018).

    CAS 

    Google Scholar
     

  • White, A. L. et al. Interaction with FcγRIIB is critical for the agonistic activity of anti-CD40 monoclonal antibody. J. Immunol. 187, 1754–1763 (2011).

    CAS 

    Google Scholar
     

  • Yu, X. et al. Complex interplay between epitope specificity and isotype dictates the biological activity of anti-human CD40 antibodies. Cancer Cell 33, 664–675.e4 (2018).

    CAS 

    Google Scholar
     

  • White, A. L. et al. Conformation of the human immunoglobulin G2 hinge imparts superagonistic properties to immunostimulatory anticancer antibodies. Cancer Cell 27, 138–148 (2015).

    CAS 

    Google Scholar
     

  • Ahonen, C. et al. The CD40–TRAF6 axis controls affinity maturation and the generation of long-lived plasma cells. Nat. Immunol. 3, 451–456 (2002).

    CAS 

    Google Scholar
     

  • Dahan, R. et al. Therapeutic activity of agonistic, human anti-CD40 monoclonal antibodies requires selective FcγR engagement. Cancer Cell 29, 820–831 (2016).

    CAS 

    Google Scholar
     

  • Yu, X. et al. Isotype switching converts anti-CD40 antagonism to agonism to elicit potent antitumor activity. Cancer Cell 37, 850–866.e7 (2020).

    CAS 

    Google Scholar
     

  • Ma, D. Y. & Clark, E. A. The role of CD40 and CD154/CD40L in dendritic cells. Semin. Immunol. 21, 265–272 (2009).

    CAS 

    Google Scholar
     

  • Yu, X. et al. TNF receptor agonists induce distinct receptor clusters to mediate differential agonistic activity. Commun. Biol. 4, 772 (2021).

    CAS 

    Google Scholar
     

  • Chester, C., Sanmamed, M. F., Wang, J. & Melero, I. Immunotherapy targeting 4-1BB: mechanistic rationale, clinical results, and future strategies. Blood 131, 49–57 (2018).

    CAS 

    Google Scholar
     

  • Chin, S. M. et al. Structure of the 4-1BB/4-1BBL complex and distinct binding and functional properties of utomilumab and urelumab. Nat. Commun. 9, 4679 (2018).


    Google Scholar
     

  • Gong, J., Chehrazi-Raffle, A., Reddi, S. & Salgia, R. Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy: a comprehensive review of registration trials and future considerations. J. Immunother. Cancer 6, 8 (2018).


    Google Scholar
     

  • Paluch, C., Santos, A. M., Anzilotti, C., Cornall, R. J. & Davis, S. J. Immune checkpoints as therapeutic targets in autoimmunity. Front. Immunol. 9, 2306 (2018).


    Google Scholar
     

  • Curnock, A. P. et al. Cell-targeted PD-1 agonists that mimic PD-L1 are potent T cell inhibitors. JCI Insight 6, e152468 (2021).


    Google Scholar
     

  • Bryan, C. M. et al. Computational design of a synthetic PD-1 agonist. Proc. Natl Acad. Sci. USA 118, e2102164118 (2021).

    CAS 

    Google Scholar
     

  • Lee, J. Y. et al. Structural basis of checkpoint blockade by monoclonal antibodies in cancer immunotherapy. Nat. Commun. 7, 13354 (2016).

    CAS 

    Google Scholar
     

  • Bardhan, K. et al. Phosphorylation of PD-1-Y248 is a marker of PD-1-mediated inhibitory function in human T cells. Sci. Rep. 9, 17252 (2019).


    Google Scholar
     

  • Chemnitz, J. M., Parry, R. V., Nichols, K. E., June, C. H. & Riley, J. L. SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation. J. Immunol. 173, 945–954 (2004).

    CAS 

    Google Scholar
     

  • Patsoukis, N., Wang, Q., Strauss, L. & Boussiotis, V. A. Revisiting the PD-1 pathway. Sci. Adv. 6, eabd2712 (2020).

    CAS 

    Google Scholar
     

  • Jones, B., Tite, J. P. & Janeway, C. A. Jr Different phenotypic variants of the mouse B cell tumor A20/2J are selected by antigen- and mitogen-triggered cytotoxicity of L3T4-positive, I-A-restricted T cell clones. J. Immunol. 136, 348–356 (1986).

    CAS 

    Google Scholar
     

  • Lu, R. M. et al. Development of therapeutic antibodies for the treatment of diseases. J. Biomed. Sci. 27, 1 (2020).

    CAS 

    Google Scholar
     

  • Tabasinezhad, M. et al. Trends in therapeutic antibody affinity maturation: from in-vitro towards next-generation sequencing approaches. Immunol. Lett. 212, 106–113 (2019).

    CAS 

    Google Scholar
     

  • Chodorge, M. et al. A series of Fas receptor agonist antibodies that demonstrate an inverse correlation between affinity and potency. Cell Death Differ. 19, 1187–1195 (2012).

    CAS 

    Google Scholar
     

  • Segal, N. H. et al. Phase I study of single-agent utomilumab (PF-05082566), a 4-1BB/CD137 agonist, in patients with advanced cancer. Clin. Cancer Res. 24, 1816–1823 (2018).

    CAS 

    Google Scholar
     

  • Rudnick, S. I. et al. Influence of affinity and antigen internalization on the uptake and penetration of anti-HER2 antibodies in solid tumors. Cancer Res. 71, 2250–2259 (2011).

    CAS 

    Google Scholar
     

  • Wajant, H. Principles of antibody-mediated TNF receptor activation. Cell Death Differ. 22, 1727–1741 (2015).

    CAS 

    Google Scholar
     

  • Roghanian, A. et al. Antagonistic human FcγRIIB (CD32B) antibodies have anti-tumor activity and overcome resistance to antibody therapy in vivo. Cancer Cell 27, 473–488 (2015).

    CAS 

    Google Scholar
     

  • Krissinel, E. Stock-based detection of protein oligomeric states in jsPISA. Nucleic Acids Res. 43, W314–W319 (2015).

    CAS 

    Google Scholar
     

  • Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007).

    CAS 

    Google Scholar
     

  • Davis, C. B. et al. Combination of a PD-1 antagonist and a 4-1BB agonist for treating cancer. International patent publication number WO 2015/119923 A1 (2015).

  • Korman, A. J. et al. Human monoclonal antibodies to programmed death 1 (PD-1) and methods of treating cancer using anti-PD01 antibodies alone or in combination with other immunotherapeutics. International patent publication number WO 2006/121168 A1 (2006).

  • Keler, T et al. Antibodies that bind human CD27 and uses thereof. US patent 9,169,325 (2015).

  • Hanke, T et al. Nucleic acids encoding superagonistic anti-CD28 antibodies. US patent 7,585,960 (2009).

  • Arakawa, F. et al. Cloning and sequencing of the VH and Vκ genes of an anti-CD3 monoclonal antibody, and construction of a mouse/human chimeric antibody. J. Biochem. 120, 657–662 (1996).

    CAS 

    Google Scholar
     

  • Meyer, L. et al. A simplified workflow for monoclonal antibody sequencing. PLoS ONE 14, e0218717 (2019).

    CAS 

    Google Scholar
     

  • Sallusto, F. & Lanzavecchia, A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J. Exp. Med. 179, 1109–1118 (1994).

    CAS 

    Google Scholar
     

  • Gate, D. et al. Clonally expanded CD8 T cells patrol the cerebrospinal fluid in Alzheimer’s disease. Nature 577, 399–404 (2020).

    CAS 

    Google Scholar
     

  • Fernandes, R. A. et al. Immune receptor inhibition through enforced phosphatase recruitment. Nature 586, 779–784 (2020).

    CAS 

    Google Scholar
     

  • Austin, C. D. et al. Endocytosis and sorting of ErbB2 and the site of action of cancer therapeutics trastuzumab and geldanamycin. Mol. Biol. Cell 15, 5268–5282 (2004).

    CAS 

    Google Scholar
     

  • Sopp, J. M. et al. On-target IgG hexamerisation driven by a C-terminal IgM tail-piece fusion variant confers augmented complement activation. Commun. Biol. 4, 1031 (2021).

    CAS 

    Google Scholar
     

  • LEAVE A REPLY

    Please enter your comment!
    Please enter your name here